您现在的位置是:结局
瓦特简介,詹姆斯·瓦特的介绍
2020-11-21 02:32结局
简介瓦特是姆斯·瓦特,出生于1736年1月19日,是英明家,他开辟了人类利源新时代,使人类“蒸汽时代”。后人为了纪念这位伟大的发明家,把功率的单位定为“瓦特”(简称“瓦”,符号W)。1784年,瓦特对联协 詹姆斯·瓦特的介绍...

瓦特是姆斯·瓦特,出生于1736年1月19日,是英明家,他开辟了人类利源新时代,使人类“蒸汽时代”。后人为了纪念这位伟大的发明家,把功率的单位定为“瓦特”(简称“瓦”,符号W)。
1784年,瓦特对联协式蒸汽机进行了改进,增加了一种自动调节蒸汽机速率的装置,使它能适用于各种机械的运动。从此之后,纺织业、采矿业、冶金业、造纸业等工业部门,都先后采用蒸汽机做为动力。
扩展资料:
瓦特蒸汽机发明的重要性是难以估量的,它被广泛地应用在工厂成为几乎所有机器的动力,改变了人们的工作生产方式,极大地推动了技术进步并拉开了工业革命的序幕。
它使得工厂的选址不必再依赖于煤矿而可以建立在更经济更有效的地方,也不必依赖于水能从而能常年地运转,这进一步促进了规模化经济的发展,大大提高了生产率的同时也使得商业投资更有效率。
蒸汽机为一系列精密加工的革新提供了可能,更高的工艺保证各种机器包括蒸汽机本身的性能提高。经过不断的努力,引入更高气压的蒸汽,蒸汽火车蒸汽轮船便很快相继问世。
参考资料来源:百度百科-詹姆斯·瓦特
-下面是更多关于瓦特简介的问答
瓦特 瓦特(JamesWatt,1736~1819)发明家、工程1736年1月19日生于苏格兰的一个小镇格克。他从小体弱多病,由进行了启蒙教育。父亲是个具有多种手艺的工匠,受其影响瓦特特从小就有实验的兴趣和才能。传说他小的时候,曾用布把壶嘴堵死,看到蒸汽的力量把壶盖冲开。这一现象激发了他的探索精神。后来进了格里诺克文法学校学习,因身体不好,退学在家自学,并经常随父亲到工厂学习制作机械模型、仪器的技术,进行化学和电学实验。靠着虚心求学、刻苦钻研的精神,15岁学完了《物理学原理》并获得了丰富的木工、金属冶炼和加工等工艺技术。1753年他在家钟表店学手艺。1753年又跟有名的机械师摩尔根当学徒。经过刻苦学习,努力实践,他已能制造难度较高的象限仪、罗盘、经纬仪等。1756年在格拉斯哥大学当了仪器修理员,这是他一生的转折点。一方面该校具有较完善的仪器设备和先进技术,为他的工作创造了良好的技术条件。更重要的是他在这里结识了英国化学家、物理学家J.布莱克等著名学者,他可以经常跟他们讨论改进蒸汽机的理论和技术问题,从他们那里学到许多科学理论知识。这对他后来的发明工作影响很大。 1764年瓦特在修理纽科门蒸汽机时,精心研究了这种热机的工作原理和耗煤量大、效率低的症结。他受J.布莱克的潜热学说启示,找到了纽科门蒸汽机耗煤量大、效率低的原因,即汽缸在使气体膨胀和用水冷凝时一热一冷,损耗大量热量。瓦特于1765年发明了把冷凝过程从汽缸中分离出来的分离式冷凝器。冷凝器的发明在蒸汽机的发展中起了关键性的作用。1768年他制成了一台单动作蒸汽机(活塞单方向推动做功),这台蒸汽机还采用了汽缸外设置绝热层、用油润滑活塞等各种新措施,大大降低了蒸汽消耗量,耗煤量只有纽科门机的1/4,动作也更迅速。1776年这种机器开始在厂矿使用。1781年,他发明了行星式齿轮,将蒸汽机活塞的往运动变为旋转运动。1782年他发明了大动力的“双动作蒸汽机”并获得专利,并利用飞轮解决了蒸汽机运转的稳定性问题。1784年他发明了平行运动连杆机构,解决了双动作蒸汽机的结构问题。1788年他发明了离心式调速器和节气阀,用来自动控制蒸汽机的运转速度。1790年发明了蒸汽机配套用压力计。 到此为止,瓦特完成了对蒸汽机的整套发明过程。经过他的一系列重大的发明和改进,使蒸汽机的效率提高到原来纽科门机的3倍多,而且配套齐全、性能优良、切合实用。瓦特由此博得了第一部现代蒸汽机——高效率瓦特蒸汽机的发明者称号。很快,瓦特蒸汽机在纺织、采矿、冶炼和交通运输等方面得到了广泛应用,极大地推动了英国和欧洲的第一次工业革命,使世界进入了所谓的“蒸汽机时代”。瓦特对蒸汽机的发明、改进及蒸汽机的广泛应用,直接推动了热力学理论的研究和发展。 1769年,瓦特量试验的基础上,经过数次失败,终于制成了一台单动式蒸汽机,并且获得蒸汽机的专利权。 1757年瓦特到格拉斯哥大学当教学仪器修理工。那里既有完备的实验设施和各种仪器,又有许多著名学者和专家,这些都给瓦特提供了极其有利的条件。学校还专门为他创办了实验车间。1769年,瓦特在大量试验的基础上,经过了无数次失败,终于制成了一台单动式蒸汽机,并且获得了第一台蒸汽机的专利权。1782年瓦特又研制成功一种新式双向蒸汽机,并且可以广泛地应用在各种机器上;1788年,英国政府正式授予瓦特制造蒸汽机的专利证书;从1775年到1800年,瓦特和波尔顿合办的苏霍工厂,就制造出183台蒸汽机,全用于纺织业、冶金业和采矿业,到了19世纪30年代,蒸汽机推向了全世界,从此人类社会进入了“蒸汽时代”。造福于人类的发明家——瓦特永远被后人敬仰。 参考资料:http://wangxiao.kc100.com:801/Resource/Book/Edu/KWDW/TS002065/0021_ts002065.htm 不好意思看第一段吧。James Watt - Inventor of the Modern Steam EngineJames Watt was of humble lineage, born in Greenock, Scotland on January 19, 1736. Greenock was then a little Scotch fishing village that became a busy town with a fleet of steamships during Watt's lifetime. His grandfather, Thomas Watt, was a well known mathematician and local schoolmaster. His father was a prominent citizen of Greenock, and was at various times chief magistrate and treasurer of the town.Mechanical MindJames Watt was intelligent, however, because of poor health he was unable to attend school regularly. His early education was given by his parents. Tools from his father's carpenter bench provided Watt's with manual dexterity and familiarity with their use gave the boy an early education in the basics of engineering and tooling.Arago, the eminent French philosopher, who wrote one of the earliest and most interesting biographies of James Watt, relates anecdotes about the mechanical bent of the boy's mind. Sponsored LinksModel Steam EngineAll Kinds Of Model Steam Engine Here In One Spot.Modellings.CluedUpSearch.netEnergy InnovationsSteam and Stirling Engines, Fuel Cells, Solar Models and Toyswww.newenergyshop.comJames Watt BiographyA Detailed Life History 31 Pages of Biographical ContentBookRags.comAt the age of six years, James Watt occupied himself during by solving geometrical problems, and by experimenting with his mother's tea kettle, his earliest investigation into the nature of steam.When James Watt was finally sent to the village school, his ill health prevented his making rapid progress; and it was only when thirteen or fourteen years of age that he began to show that he was capable of taking the lead in his class, and to exhibit his abilities, particularly in mathematics. His spare time was spent sketching with his pencil, carving, and working at the tool bench with wood and metal. He made many ingenious pieces of mechanism, and some beautiful models. He liked to repair nautical instruments. Among other pieces of apparatus made by the boy was a very fine barrel organ. In boyhood, James Watt was an avid reader, and found something to interest him in every book that came into his hands.ApprenticeshipsAt the age of eighteen, James Watt was sent to Glasgow to reside with his mother's relatives, and learn the trade of a mathematical instrument maker. James Watt soon outgrow the knowledge of the mechanic he was apprenticed to. A friend and professor at the University of Glasgow, Doctor Dick advised him to move to London. James Watt moved in June of 1755, and found work with John Morgan, in Cornhill, for twenty guineas a week. After a year he was compelled, by serious ill health, to return home.After regaining his health, James Watt returned to Glasgow in 1756. However, because he had not finished his apprenticeship, he was forbidden by the guilds, or trades unions, to open a shop in Glasgow. Doctor Dick came to his aid, and employed him to repair apparatus at the University. He remained there until 1760, when he was allowed to open a mechanic shop in the city. He briefly worked as a civil engineer, however, he preferred mechanics. James Watt spent much of his leisure time making musical instruments, inventing improvements in the construction of organs.Newcomen Steam EngineHe kept his connections with the University of Glasgow and that led to his introduction to the Newcomen steam engine in 1763. A model was owned by the University and given to James Watt for repairs.Doctor Robison, a student at the University, was friends with James Watt and hung around his shop. It was Robison who first intoduced James Watt to the concept of steam engines in 1759, and suggested that they could be used for the propulsion of carriages. James Watt built minature models using tin steam cylinders and pistons attached to driving wheels by a system of gears. However, he abandoned his early research on steam engines. After he examined the Newcomen steam engine twenty-five years later, Watts renewed his interest and began studing the history of the steam engine, and conducting experimental research into the properties of steam.In his own experiments he used, at first, apothecaries' trials and hollow canes for steam reservoirs and pipes, and later a Papin's digester and a common syringe. The latter combination made a non condensing engine, in which he used steam at a pressure of 15 pounds per square inch. The valve was worked by hand, and James Watt saw that an automatic valve gear was needed to make a working machine. This experiment, however, led to no practical result. Watt finally got hold of the Newcomen model, after putting it in good working order, commenced experiments with that.James Watt and the Newcomen Steam Engine The Newcomen steam engine model had a boiler which was made to scale and was incapable of furnishing enough steam to power an engine. It was about nine inches in diameter; the steam cylinder was two inches in diameter, and had a six inch piston stroke.IJames Watt - mproving the BroilerJames Watt made a new boiler for the experimental investigation on which he was about to enter that could measure the quantity of water evaporated and the steam condensed at every stroke of the engine.James Watt Rediscovers Latent HeatHe soon discovered that it required a very small quantity of steam to heat a very large quantity of water, and immediately started to determine with precision the relative weights of steam and water in the steam cylinder when condensation took place at the down stroke of the engine. James Watt independently proved the existence of "latent heat", the discovery of another scientist, Doctor Black. Watt went to Black with his research, who shared his knowledge with Watt. Watt found that, at the boiling point, his condensing steam was capable of heating six times its weight of water used for producing condensation.James Watt's Separate CondenserRealizing that steam, weight for weight was a vastly greater absorbent and reservoir of heat than water, Watt saw the importance of taking greater care to economize it than had previously been attempted. At first, he economized in the boiler, and made boilers with wooden "shells" in order to prevent losses by conduction and radiation, and used a larger number of flues to secure more complete absorption of the heat from the furnace gases. He also covered his steam pipes with nonconducting materials, and took every precaution to secure the complete utilization of the heat of combustion. He soon discovered that the great source of loss was to be found in defects which he noted in the action of the steam in the cylinder. He soon concluded that the sources of loss of heat in the Newcomen engine which would be greatly exaggerated in a small model were:First, the dissipation of heat by the cylinder itself, which was of brass, and was both a good conductor and a good radiator. Secondly, the loss of heat consequent upon the necessity of cooling down the cylinder at every stroke, in producing the vacuum.Thirdly, the loss of power due to the pressure of vapor beneath the piston, which was a consequence of the imperfect method of condensation.James Watt first made a cylinder of nonconducting material wood soaked in oil and then baked and increased the economy of steam. He then conducted a series of very accurate experiments upon the temperature and pressure of steam at such points on the scale as he could readily reach, and, constructing a curve with his results, the abscesses representing temperatures and the pressures being represented by the ordinates, he ran the curve backward until he had obtained closely approximate measures of temperatures less than 212, and pressures less than atmospheric. Watt thus found that, with the amount of injection water used in the Newcomen engine, bringing the temperature of the interior, as he found, down to from 140° to 175° Fahrenheit, a very considerable back pressure would be met with.Continuing his research, he measured the amount of steam used at each stroke, comparing it with the quantity that would just fill the cylinder, he found that at least three fourths was required. The quantity of cold water necessary to produce the condensation of a given weight of steam was determined next; and he found that one pound of steam contained enough heat to raise about six pounds of cold water, as used for condensation, from the temperature of 62° to the boiling point. James Watt was compelled to use, at each stroke of the Newcomen engine, four times as much injection water as the amount used to condense a cylinder full of steam. This confirmed his previous conclusion that three-fourths of the heat supplied to the engine was wasted.James Watt's Perfected Separate CondenserJames Watt's research determined the following facts: The capacities for heat of iron, copper, and of some sorts of wood, as compared with water. The bulk of steam compared with that of water. The quantity of water evaporated in a certain boiler by a pound of coal. The elasticity of steam at various temperatures greater than that of boiling water, and an approximation to the law which it follows at other temperatures. How much water in the form of steam was required every stroke by a small Newcomen engine, with a wooden cylinder 6 inches in diameter and 12 inches stroke. The quantity of cold water required in every stroke to condense the steam in that cylinder, so as to give it a working power of about 7 pounds on the square inch.After his scientific investigations, James Watt worked on improving the steam engine with an intelligent understanding of its existing defects, and with a knowledge of their cause. Sponsored LinksSteam EnginesFind Out More About Steam Engines Here.Engine.CluedUpSearch.netMarine Engine Water TestMonitor oiler water and cooling water - test kits from Kittiwakewww.kittiwake.comResistors.025 - 2000 Watts & Replacements For Ohmite Resistors.www.heiresistors.comWatt soon saw that in order to reduce the losses in the working of the steam in the steam cylinder, it would be necessary to find a way to keep the cylinder always as hot as the steam that entered it.James Watt WritesAccording to James Watt: "I had gone to take a walk on a fine Sabbath afternoon. I had entered the Green by the gate at the foot of Charlotte street, and had passed the old washing house. I was thinking upon the engine at the time, and had gone as far as the herd's house, when the idea came into my mind that, as steam was an elastic body, it would rush into a vacuum, and, if a communication were made between the cylinder and an exhausted vessel, it would rush into it, and might be there condensed without cooling the cylinder. I then saw that I must get rid of the condensed steam and injection water if I used a jet, as in Newcomen's engine. Two ways of doing this occurred to me: First, the water might be run off by a descending pipe, if an off jet could be got at the depth of 35 or 36 feet, and any air might be extracted by a small pump. The second was, to make the pump large enough to extract both water and air. I had not walked farther than the Golf house, when the whole thing was arranged in my mind."Referring to this invention, James Watt said: "When analyzed, the invention would not appear so great as it seemed to be. In the state in which I found the steam engine, it was no great effort of mind to observe that the quantity of fuel necessary to make it work would forever prevent its extensive utility. The next step in my progress was equally easy to inquire what was the cause of the great consumption of fuel. This, too, was readily suggested, viz., the waste of fuel which was necessary to bring the whole cylinder, piston, and adjacent parts from the coldness of water to the heat of steam, no fewer than from 15 to 20 times in a minute."James Watt had invented his all-important separate condenser. He proceeded to make an experimental test of his new invention, using for his steam cylinder and piston a large brass surgeon's syringe, 14 inch diameter and 10 inches long. At each end was a pipe leading steam from the boiler, and fitted with a cock to act as a steam valve. A pipe led also from the top of the cylinder to the condenser, the syringe being inverted and the piston rod hanging downward for convenience. The condenser was made of two pipes of thin tin plate, 10 or 12 inches long, and about one sixth of an inch in diameter, standing vertically, and having a connection at the top with a horizontal pipe of larger size, and fitted with a "snifting valve." Another vertical pipe, about an inch in diameter, was connected to the condenser, and Watt fitted with a piston, with a view to using it as an "air pump."The whole thing was set in a cistern of cold water. The piston rod of the little steam cylinder was drilled from end to end to permit the water to be removed from the cylinder. This little model worked very satisfactorily, and the perfection of the vacuum was such that the machine lifted a weight of 18 pounds hung upon the piston rod, as in the sketch. A larger model was immediately afterward constructed, and the result of its test confirmed fully the anticipations which had been awakened by the first experiment.Having taken this first step and making such a radical improvement, the success of this invention was followed by more. All the result of improving the old Newcomen engine.James Watt Builds his Own Steam Engine In the working out of the forms and proportions of the details of the new steam engine, even James Watt's powerful mind, stored as it was with happily combined scientific and practical information, was occupied for years.In attaching the separate condenser, he first attempted surface condensation; but this not succeeding well, he substituted the jet. Watt had to find a way to prevent the filling of the condenser with water.James Watt at first lead a pipe from the condenser to a depth greater than the height of a column of water which could be counterbalanced by the pressure of the atmosphere; subsequently he employed an air pump, which relieved the condenser of the water and air which collected in the condenser, and lessened the vacuum. He next substituted oil and tallow for the water used to lubricate the piston, keeping the steam tight and preventing the cooling of the cylinder. Sponsored LinksEnergy InnovationsSteam and Stirling Engines, Fuel Cells, Solar Models and Toyswww.newenergyshop.comModel Steam EngineFind The Top Sites For Model Steam Engine Here.Modellings.CluedUpSearch.netFine Art Transport PrintsLimited Editions by David Weston. Steam Trains, Tractors and Cars.www.amehursts.comAnother cause of refrigeration of the cylinder, and consequent waste of power in its operation, was the entrance of air, which followed the piston down the cylinder at each stroke, cooling its interior by its contact. The inventor prevented this from happening by covering the top of the cylinder.He not only covered the top, but surrounded the whole cylinder with an external casing, or "steam jacket" that allowed the steam from the boiler to pass around the steam cylinder and press on the upper surface of the piston.After James Watt built his larger experimental engine, he hired a room in an old deserted pottery. There he worked with mechanic Folm Gardiner. Watt had just met Doctor Roebuck, a wealthy physician, who had, with other Scotch capitalists, just founded the celebrated Carron Iron Works. James Watt frequently wrote to Roebuck describng his progress.In August, 1765, he tried the small engine, and wrote Roebuck that he had "good success" although the machine was very imperfect. He then tells his correspondent that he was about to make the larger model. In October, 1765, he finished the large steam engine. The engine, when ready for trial, was still very imperfect. It nevertheless did good work for so crude a machine.James Watt was now reduced to poverty, after borrowing considerable sums from friends, he finally had to seek employment in order to provide for his family. During an interval of about two years he supported himself by surveying, exploring coal fields in the neighborhood of Glasgow for the magistrates of the city. He did not, however, entirely give up his invention.In 1767, Roebuck assumed Watt's liabilities to the amount of £1,000, and agreed to provide more capital in exchange for two thirds of Watt's patent. Another engine was built with a steam cylinder seven or eight inches in diameter, which was finished in 1768. This worked sufficiently well to induce the partners to ask for a patent, and the specifications and drawings were completed and presented in 1769.James Watt also built and set up several Newcomen engines, partly, perhaps, to make himself thus thoroughly familiar with the practical details of engine building. Meantime, also, he prepared the plans for, and finally had built, a moderately large engine of his own new type. Its steam cylinder was 18 inches in diameter, and the stroke of piston was 5 feet. This engine was built at Kinneil, and was finished in September, 1769. It was not all satisfactory in either its construction or its operation. The condenser was a surface condenser composed of pipes somewhat like that used in his first little model, and did not prove to be satisfactorily tight. The steam piston leaked seriously, and repeated trials only served to make more evident its imperfections. He was assisted in this time of need by both Dr. Black and Dr. Roebuck; but he felt strongly the risks which he ran of involving his friends in serious losses, and became very despondent.Writing to Dr. Black, he says: "Of all things in life, there is nothing more foolish than inventing; and probably the majority of inventors have been led to the same opinion by their own experiences."Misfortunes never come singly; and Watt was borne down by the greatest of all misfortunes the loss of a faithful and affectionate wife while still unable to see a successful issue of his schemes. Only less disheartening than this was the loss of fortune of his steadfast friend, Dr. Roebuck, and the consequential loss of his aid. It was at about this time, in the year 1769, that negotiations were commenced which resulted in the transfer of the capitalized interest in Watt's engine to the wealthy manufacturer whose name, coupled with that of Watt, afterward became known throughout the civilized world, as the steam engine in its new form was pushed into use by his energy and business tact.James Watt Partners with Matthew Boulton In 1768, James Watt met Matthew Boulton, his business partner, during his journey to London to get his patent. Matthew Boulton wanted to buy an interest in the patent. With Roebuck's consent, Watt offered Matthew Boulton a one third interest. Subsequently, Roebuck proposed to transfer to Matthew Boulton, one half of his proprietorship in Watt's inventions, for a sum of one thousand pounds. This proposal was accepted in November, 1769.Matthew Boulton was the son of a Birmingham silver stamper and piecer, and succeeded to his father's business, building up a great establishment, which, as well as its proprietor, was well known in Watt's time.Watt's estimate of the value of Boulton's ingenuity and talent was well founded. Boulton had shown himself a good scholar, and had acquired considerable knowledge of the languages and of the sciences, particularly of mathematics, after leaving the school from which he graduated into the shop when still a boy. 詹姆斯·瓦特1736年1月19日 - 1819年8月25日)是英国著发明家工业革命时期的重要人物。英国学会会员和法兰西科学院外籍院士。他对当时已出现的蒸汽机原始雏形作了一系列的重大改进,发明了单缸单动式和单缸双动式蒸汽机,提高了蒸汽机的热效率和运行可靠性,对当时社会生产力的发展作出了杰出贡献。他改良了蒸汽机、发明了气压表、汽动锤。后人为了纪念他,将制中功率和辐射通量的计量单位称为瓦特,常用符号“W”表示。他的芳名将永远刻在人类的历史上。 瓦特(James Watt)1736年1月19日生于英国苏格兰格拉斯哥市格里诺克。童年时代的瓦特曾在文法学校念过书,然而没有受过系统教育。瓦特在父亲做工的工厂里学到许多机械制造知识,以后他到伦敦的一家钟表店当学徒。1763年瓦特到著名的格拉斯哥大学(University of Glasgow)工作,修理教学仪器。在大学里他经常和教授讨论理论和技术问题。1781年瓦特制造了从两边推动活塞的双动蒸汽机。1785年,他也因蒸汽机改进的重大贡献,被选为皇家学会会员。1819年8月25日瓦特在靠近伯明翰的希斯菲德逝世。至今,人们仍然能在格拉斯哥大学的博物馆里看到瓦特的大理石雕像(瓦特的儿子送给格拉斯哥大学的礼物)。 在瓦特的讣告中,对他发明的蒸汽机有这样的赞颂: “它武装了人类,使虚弱无力的双手变得力大无穷,健全了人类的大脑以处理一切难题。它为机械动力在未来创造奇迹打下了坚实的基础,将有助并报偿后代的劳动。” 生平事迹 一、喜欢寻根问底的孩子 瓦特1736年出生于英国苏格兰西部的格林诺格镇,他的祖父曾经是一位教师,教授数学、测量学和航海学,父亲原来是个造船技术工人。后来自己经营过造船业和建筑业,做过仪器制造家和商人,还曾经一度担任过小镇的地方行政官。耳濡目染,瓦特从幼年起就随父亲学习各种手艺。他心灵手巧,从小接触和了解了不少技术方面的知识,并养成了一种独立思考和探索奥秘的兴趣和习惯。他的家庭环境对他日后攀登技术高峰起到了一定的作用。 瓦特从小身体虚弱,到了入学年龄,仍不能去上学。过了入学年龄好几年,他才到镇上的学校学习。在学校里,他不喜欢与小朋友们打闹,只爱独自沉思默想。关于他的童年,曾有过一个广为人知的传说:有一天,小瓦特在家里看见一壶水开了,蒸汽把壶盖冲得噗噗地跳。这种常人司空见惯的现象却引起了他极浓厚的兴趣。他目不转睛地凝视那跳动的壶盖和冒出的蒸汽,苦思冥想其中的奥秘。一直看了一个多小时。由于瓦特常常会面对他不熟悉、不认识的许多现象长时间地默默观察,崐人因此说他是个“懒孩子”。其实正是这种好奇心和寻根问底的精神,后来引导他去努力探索世界的种种奥秘,攀登科学的高峰。 13岁那年,他对几何学发生了兴趣,15岁就读完了《几何学原理》这样艰深的书籍。后来他进入文法学校,数学成绩特别优秀。由于身体不好,他没到毕业就退学了。但是,他在家里坚持自学了天文学、化学、物理学和解剖学等多学科知识,并自学了好几种外语。瓦特17岁时到格拉斯哥的一家钟表店里当了学徒。他在业余时间刻苦学习,进一步掌握了许多科技原理。在当学徒时他曾经动手制造过技术要求较高的罗盘、经纬仪等。21岁那年,他来到了格拉斯哥大学当教具实验员,负责修理和制造仪器。他进一步熟悉了当时一些较先进的机械技术。 二、推动整个世界的发明 人类对蒸汽的认识和利用,经历了一个漫长的历史过程。早在公元前二世纪,古希腊人就制造过一种利用蒸汽喷射的反作用的发动机。1690年,法国人巴比首先发明了第一台活塞式蒸汽机,但他未能制成实用的蒸汽机。1698年,英国的一位技师塞莱斯发明了实用的无活塞式蒸汽机。这种机器在矿井中得到应用,被称为“矿山之友”,但受当时材料和技术的限制,无法推广。1712年,一位毫无名气的铁器商纽科门发明了第一台实用的蒸汽机。 蒸汽机是一项改变了工业发展进程的技术创新。纽科门和他的管子工助手考利偶然发现,把压缩蒸汽通入一个圆筒能够产生局部真空,于是大气压力就可以推动圆筒里的活塞。那样的蒸汽机,要把一个大汽缸交替着加热、冷却,当然是效率极低,烧起煤来浪费非常大。但是,纽科门的蒸汽机起初是用于煤矿,那里的煤价甚低,使用起来还是合算的,所以很快便被广泛采用。不过,对煤的大量浪费毕竟是那种机器的严重缺点,特别是用于别的地方时成本就太高,因此迫切需要提高蒸汽机的效率。 大约在18世纪中期,英国工匠斯米顿和瓦特各自按照完全不同的思路分别改进课纽科门的蒸汽机。他们两人的改进工作仍然基本上是 在技艺传统内进行的,没有用到什么科学的抽象。斯米顿后来当上了民间工程师协会(斯米顿协会)的主席,他采用的纯粹是靠经验办法,有条不紊、一个一个的试验样机,不改动基本的设计,只是改变各个零部件的尺寸。就这样,他把纽科门蒸汽机的效率提高了一倍。瓦特在1765年的一个星期日外出散心的时候突然想到他的解决办法。他的想法是,纽科门蒸汽机的主要缺陷在于每一冲程都要用冷水将汽缸冷却一次,从而耗了大量热量,使绝大部分蒸汽没有被有效利用。如果把蒸汽压至汽缸外面的另一个容器中去冷却,那么汽缸在整个循环过程中就可以保持始终是热的。避免了把汽缸一会儿加热一会儿冷却,对燃煤的节约自然十分可观。瓦特自筹资金,租了间地下室,买了必要的设备,反复实验,经历了无数次挫折和失败,在工人的帮助下,终于发明了与汽缸分离的冷凝器,解决了制造精密汽缸、活塞的工艺问题,同时采用油润滑活塞,汽缸外附加绝热层等措施,制成单动作蒸汽机。后经继续试验,又在1782年,发明了具有连杆、飞轮和离心调速器的双动作蒸汽机,制成了新的可实用的蒸汽机。这种双动作式蒸汽机,把阀门安装得可利用蒸汽的压力来推动活塞,既可向前又可向后。并借助连杆和飞轮把活塞的直线运动变成了圆周运动。为了保持蒸汽机的匀速运转,他把一个离心调速器连接在进汽活门上,使其自动调节进汽量。这种装置是最早在技术上使用的自动控制器。他设计了一个和汽缸分离的冷凝器,将高温蒸汽从气缸中导出并冷却,使得主要汽缸能保持一定温度。同时他提高了汽缸的精密度,把活塞和阀门也做得光滑、严密。瓦特的思路从原理上讲非常新颖,效率提高也就非常惊人。通过与伯明翰的一位机器制造商博尔顿合作生产和销售(这一合作十分成功和著名),瓦特的蒸汽机很快被用户接受,不久以后就被广泛应用于采煤业以外的其他工业,促进了城市制造业的大发展。到1800年时,英国已有500台瓦特蒸汽机在各地哧哧冒气,此后其数量更是增长迅猛。瓦特的蒸汽机成为真正的国际性发明,它有力地促进了欧洲18世纪的产业革命,推动世界工业进入了“蒸汽时代”。但是瓦特的蒸汽机仍然要依靠大气压力,因而必然是又大又重(有时就叫“固定机”)。到18世纪末,那样的固定机通常被工厂用来推动机器;因为船体比较大,所以早期的汽船也能够用大气蒸汽机来推动。可是铁路机车就不行,非要有体积较小的高压机型不可。那种较小的蒸汽机是在1800年由另一位英国人特里维西克设计出来的。 三、名垂青史的天才发明家 1784年4月,英国政府授予瓦特以制造蒸汽机的专利证书。马克思曾经评论说:瓦特的伟大天才表现在他所取得的专利的说明书中,他没有把自己的蒸汽机说成是一种用于特殊目的的发明,而是把它说成是大工业普遍应用的发动机。 瓦特在英国和欧洲大陆各国的学术界和科学界享有崇高的地位。1784年他成为爱丁堡皇家学会的会员,1785年又成为伦敦皇家学会的会员。1808年,他成为法兰西学士院的成员,1814年,他又被选为法国科学院的8名外籍院士之一。各国科学界都承认瓦特是他们之中最著名的一员。 瓦特由于这样一个划时代的伟大发明,从一个一贫如洗的无名小卒,一下子成为一个名利双收的大人物了。他在11年的时间里获得了七万六千磅的专利税。为了保护自己的专利,他到了晚年时多少显得有些学阀作风了。他经常向法院起诉,阻止和压制别人的发明创造,甚至不许自己的助手去实验用蒸汽来发动四轮车。这是一个科学家的悲剧,也是他那个时代和社会在他身上打下的烙印。尽管如此,他仍然是一位伟大的发明家。他毕生精力集中于蒸汽机的发明,前后达20余年。他对科学技术和社会进步所作出的巨大贡献,人民是不会忘记的。 1819年,83岁的瓦特在家中安然与世长辞了。他生前对人类的科学事业作出了杰出的贡献,各国人民怀念他。1824年,在他逝世5周年时,伦敦公众为他在有名的威斯敏斯特大教堂树立了一座纪念碑。瓦特终生刻苦学习,孜孜不倦地致力于科学事业,在前人成就的基础上,发明了蒸汽机,为人类科学技术的发展作出了划时代的贡献。为了纪念瓦特这位伟大的发明家,人们把常用的功率单位定为瓦特,简称瓦。詹姆斯·瓦特(James Watt,1736年1月19日 1819年8月25日)英国家,第一次工业革命要人物。1776年制造出第一台有实用价值的蒸汽机。以后又经过一系列重大改进,使之成为“万能的原动机”,在工业上得到广泛应用。他开辟了人类利用能源新时代,使人类进入“蒸汽时代”。后人为了纪念这位伟大的发明家,把功率的单位定为“瓦特”(简称“瓦”,符号W)。
作文自己写,给你素材追问
谢谢 速度 感谢 2000字
不是作文 讲课用追答
詹姆斯·瓦特(James Watt,1736年1月19日—1819年8月19日)是英国著名的发明家,是工业革命时的重要人物。
够没
够了吗,不够的话百度一下,很多的追问
我前写了 这些追答
总结自己写追问
我能找出来追答
?百度资料很多的追问
我想要用自己花写追答
我把课本的打过来很麻烦,剩下自己百度,如何?追问
我想要自己的话来写
不要百度追答
资料总得从百度弄来,然后你就自己写啊追问
不用了追答
额,那采纳?追问
呵 好吧追答
谢谢追问
没事
Tags:瓦特简介,瓦特简介,詹姆斯·瓦特的介绍
相关文章
随机图文
养父大结局,养父苦了一辈子到最后.........
三个家庭组成了一个大家庭,他们陪楼志军一起来到北京,在天安门前拍照片,然后就结束了 养父苦了一辈子到...唐嫣个人资料简介,唐嫣个人资料家世背景
唐1983年12月6日[1] 出生于上海市黄浦区籍浙江省宁波市,中地女演员。2006年毕业于戏剧学院表演系本科班。2...无心法师演员,无心法师的演职员表
《无心法师》是搜狐和影视联合出品,改编自作者尼罗作品的奇幻剧,由李国立任总监制,林玉芬、高林豹共同执...邪恶力量第十四季,现在还有什么app可以看美剧邪恶力量
说明CW认为邪恶力量的受众还是多的一B,12季我觉得挺没意思了,来来回回的和英国佬干,但CW续订13说明哪怕...